An analytic perturbative solution for the Kadomtsev equation for a heavy atom in a very strong magnetic field

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1997 J. Phys. A: Math. Gen. 303681
(http://iopscience.iop.org/0305-4470/30/10/038)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.71
The article was downloaded on 02/06/2010 at 04:19

Please note that terms and conditions apply.

An analytic perturbative solution for the Kadomtsev equation for a heavy atom in a very strong magnetic field

Bhimsen K Shivamoggi and David K Rollins
University of Central Florida, Orlando, FL, USA

Received 8 January 1997

Abstract

In this paper, we use a perturbative procedure due to Bender et al to solve analytically the Kadomtsev equation for a heavy atom in a very strong magnetic field.

Kadomtsev [1] formulated a modified Thomas-Fermi model to describe the ground state of a heavy atom in a very strong magnetic field. This problem is of interest in connection with the emission of ions and electrons from pulsars. In this paper, we use a perturbative procedure due to Bender et al (BMPS) [2] to solve analytically the Kadomtsev equation,

$$
\begin{equation*}
\phi^{\prime \prime}=(x \phi)^{1 / 2} \tag{1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
\phi(0)=1 \quad \phi(\infty)=0 \tag{2}
\end{equation*}
$$

Here, primes denote differentiation with respect to the argument x.
Following the BMPS procedure, we replace the right-hand side of equation (1) by one which contains a parameter δ, i.e.

$$
\begin{equation*}
\phi^{\prime \prime}=\phi\left(\frac{\phi}{x}\right)^{\delta} \tag{3}
\end{equation*}
$$

so that equation (1) is recovered when $\delta=-\frac{1}{2}$ and $\delta=0$ corresponds to the linear zeroorder approximation. By identifying δ as the perturbation parameter, the potential ϕ is then expanded in a power series in δ

$$
\begin{equation*}
\phi=\phi_{0}+\delta \phi_{1}+\delta^{2} \phi_{2}+\cdots \tag{4}
\end{equation*}
$$

This then leads to a set of linear equations for ϕ_{n} :

$$
\begin{align*}
& \phi_{0}^{\prime \prime}-\phi_{0}=0 \\
& \phi_{1}^{\prime \prime}-\phi_{1}=\phi_{0} \ln \left(\frac{\phi_{0}}{x}\right) \\
& \phi_{2}^{\prime \prime}-\phi_{2}=\frac{1}{2} \phi_{0}\left(\ln \frac{\phi_{0}}{x}\right)+\phi_{1}\left[1+\ln \left(\frac{\phi_{0}}{x}\right)\right] \tag{5}
\end{align*}
$$

etc, with the boundary conditions

$$
\phi_{0}(0)=1 \quad \phi_{0}(\infty)=0
$$

$$
\begin{equation*}
\phi_{n}(0)=0 \quad \phi_{n}(\infty)=0 \quad n \geqslant 1 . \tag{6}
\end{equation*}
$$

The solutions are

$$
\begin{aligned}
& \phi_{0}=\mathrm{e}^{-x} \\
& \phi_{1}=\mathrm{e}^{-x} \int_{0}^{x} \mathrm{~d} \xi \int_{\xi}^{\infty} \mathrm{d} \zeta \mathrm{e}^{-2(\zeta-\xi)} \ln \left(\frac{\mathrm{e}^{-\zeta}}{\zeta}\right)
\end{aligned}
$$

or

$$
\phi_{1}=\frac{1}{4} \mathrm{e}^{-x}\left[(1+2 x) \ln x-x+x^{2}+\operatorname{Ei}(1,2 x) \mathrm{e}^{2 x}+\gamma+\ln 2\right]
$$

and

$$
\begin{align*}
\phi_{2}=\mathrm{e}^{-x} \int_{0}^{x} \mathrm{~d} \xi & \int_{\xi}^{\infty} \mathrm{d} \zeta \mathrm{e}^{-2(\zeta-\xi)}\left[\frac{1}{2}(\ln \zeta+\zeta)^{2}+\frac{1}{4}(1-\zeta-\ln \zeta)\right. \\
& \left.\times\left\{(1+2 \zeta) \ln \zeta-\zeta+\zeta^{2}+\operatorname{Ei}(1,2 \zeta) \mathrm{e}^{2 \zeta}+\gamma+\ln 2\right\}\right] \tag{7}
\end{align*}
$$

etc, where

$$
\operatorname{Ei}(n, x) \equiv \int_{1}^{\infty} \frac{\mathrm{e}^{-x t}}{t^{n}} \mathrm{~d} t
$$

The boundary conditions

$$
\begin{equation*}
\phi_{1}(\infty)=0 \quad \phi_{2}(\infty)=0 \tag{8}
\end{equation*}
$$

etc, then lead to

$$
\begin{align*}
& \phi_{1}^{\prime}(0)=\frac{1}{4}-\frac{1}{2} \ln 2-\frac{1}{2} \gamma=-0.3851 \\
& \phi_{2}^{\prime}(0)=-\frac{1}{8} \gamma^{2}-\frac{1}{8} \gamma-\frac{1}{4} \gamma \ln 2-\frac{1}{8}(\ln 2)^{2}-\frac{1}{8} \ln 2-\frac{13}{32}=-0.7668 \tag{9}
\end{align*}
$$

etc.
Thus, to $\mathrm{O}\left(\delta^{2}\right)$, the prediction for $\phi^{\prime}(0)$ is

$$
\phi^{\prime}(0)=\phi_{0}^{\prime}(0)+\delta \phi_{1}^{\prime}(0)+\delta^{2} \phi_{2}^{\prime}(0) \quad \delta=-\frac{1}{2}
$$

or

$$
\begin{equation*}
\phi^{\prime}(0)=-0.9991 \tag{10}
\end{equation*}
$$

which differs from the exact result (Banerjee et al [3])

$$
\begin{equation*}
\phi^{\prime}(0)=-0.938 \tag{11}
\end{equation*}
$$

by 6.5% !
Observe that while the first-order result

$$
\phi^{\prime}(0)=-0.8075+\mathrm{O}\left(\delta^{2}\right)
$$

is worse than the zeroth-order result

$$
\phi^{\prime}(0)=-1+\mathrm{O}(\delta)
$$

the second-order result (10) is better than the latter.
One may improve the convergence further by modifying the above procedure along the lines of Laurenzi [4] and others.

Acknowledgments

The work was started when the first author (BKS) held a visiting professor appointment at the Technische Hochschule Darmstadt. BKS thanks Professor Peter Mulser for his hospitality and discussions.

References

[1] Kadomstev B B 1970 Sov. Phys.-JETP 31945
[2] Bender C M, Milton K A, Pensky S S and Simmons L M Jr 1989 J. Math. Phys. 301447
[3] Banerjee B, Constantinescu D H and Rehak P 1974 Phys. Rev. D 102384
[4] Laurenzi B J 1990 J. Math. Phys. 312535

