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Abstract. In this paper, we use a perturbative procedure due to Bertlel to solve
analytically the Kadomtsev equation for a heavy atom in a very strong magnetic field.

Kadomtsev [1] formulated a modified Thomas—Fermi model to describe the ground state
of a heavy atom in a very strong magnetic field. This problem is of interest in connection

with the emission of ions and electrons from pulsars. In this paper, we use a perturbative
procedure due to Bendet al (BMPS) [2] to solve analytically the Kadomtsev equation,

9" = (x)*? 1)
with the boundary conditions
0 =1 $(00) =0. (2)

Here, primes denote differentiation with respect to the argument
Following the BMPS procedure, we replace the right-hand side of equation (1) by one
which contains a parametér i.e.

o =0 <¢>5 ©

X

so that equation (1) is recovered whé&n= —% and s = 0 corresponds to the linear zero-
order approximation. By identifying as the perturbation parameter, the potengig then
expanded in a power series dn

¢ = o+ 3¢1+ 8o+ . (4)
This then leads to a set of linear equations ¢gr
o —po=0
1 — ¢1=¢oln <¢O)
X
8 — b2 = >0 (In%> - [1+ln (‘m)} ©)
2 X X

etc, with the boundary conditions
$o(0) =1 ¢o(00) =0
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$,(0)=0 ¢n(00) =0 n>=1 (6)
The solutions are

po=¢€"

x o0 —
pr=6" / de¢ / de €2¢=9n (e)
0 £ ¢

or
¢r=1e[(L+20)Inx —x +x*+Ei(L, 20) € +y +1In2]
and
= [ o [ de Ohine 07+ da-c - ing)
0 &
x{(A+20)IN¢ —¢ +¢24Ei(1,2) ¥ +y +1In2)] 7)
etc, where

o0 A—xt
Ei(n,x) = f © dr.
1

l»n
The boundary conditions
$1(00) =0 $2(00) =0 8
etc, then lead to

$50) = —2y*— 1y —iyIn2—1(n2?—1in2—- 3 = -0.7668 9)

etc.
Thus, to @s?), the prediction forp’ (0) is

¢'(0) = ¢(0) + 541(0) + 8%¢5(0) 5 =—3

or

¢'(0) = —0.9991 (10)
which differs from the exact result (Banerjeeal [3])

¢'(0) = —0.938 (11)
by 6.5%!

Observe that while the first-order result
¢'(0) = —0.8075+ O(5?)
is worse than the zeroth-order result
¢'(0) = -1+ 0(%)

the second-order result (10) is better than the latter.
One may improve the convergence further by modifying the above procedure along the
lines of Laurenzi [4] and others.
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