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Abstract. In this paper, we use a perturbative procedure due to Benderet al to solve
analytically the Kadomtsev equation for a heavy atom in a very strong magnetic field.

Kadomtsev [1] formulated a modified Thomas–Fermi model to describe the ground state
of a heavy atom in a very strong magnetic field. This problem is of interest in connection
with the emission of ions and electrons from pulsars. In this paper, we use a perturbative
procedure due to Benderet al (BMPS) [2] to solve analytically the Kadomtsev equation,

φ′′ = (xφ)1/2 (1)

with the boundary conditions

φ(0) = 1 φ(∞) = 0. (2)

Here, primes denote differentiation with respect to the argumentx.
Following the BMPS procedure, we replace the right-hand side of equation (1) by one

which contains a parameterδ, i.e.

φ′′ = φ
(
φ

x

)δ
(3)

so that equation (1) is recovered whenδ = − 1
2 and δ = 0 corresponds to the linear zero-

order approximation. By identifyingδ as the perturbation parameter, the potentialφ is then
expanded in a power series inδ

φ = φ0+ δφ1+ δ2φ2+ · · · . (4)

This then leads to a set of linear equations forφn:

φ′′0 − φ0 = 0

φ′′1 − φ1 = φ0 ln

(
φ0

x

)
φ′′2 − φ2 = 1

2
φ0

(
ln
φ0

x

)
+ φ1

[
1+ ln

(
φ0

x

)]
(5)

etc, with the boundary conditions

φ0(0) = 1 φ0(∞) = 0
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φn(0) = 0 φn(∞) = 0 n > 1. (6)

The solutions are

φ0 = e−x

φ1 = e−x
∫ x

0
dξ
∫ ∞
ξ

dζ e−2(ζ−ξ) ln

(
e−ζ

ζ

)
or

φ1 = 1
4 e−x [(1+ 2x) ln x − x + x2+ Ei(1, 2x) e2x + γ + ln 2]

and

φ2 = e−x
∫ x

0
dξ
∫ ∞
ξ

dζ e−2(ζ−ξ)[ 1
2(ln ζ + ζ )2+ 1

4(1− ζ − ln ζ )

×{(1+ 2ζ ) ln ζ − ζ + ζ 2+ Ei(1, 2ζ ) e2ζ + γ + ln 2}] (7)

etc, where

Ei(n, x) ≡
∫ ∞

1

e−xt

tn
dt.

The boundary conditions

φ1(∞) = 0 φ2(∞) = 0 (8)

etc, then lead to

φ′1(0) = 1
4 − 1

2 ln 2− 1
2γ = −0.3851

φ′2(0) = − 1
8γ

2− 1
8γ − 1

4γ ln 2− 1
8(ln 2)2− 1

8 ln 2− 13
32 = −0.7668 (9)

etc.
Thus, to O(δ2), the prediction forφ′(0) is

φ′(0) = φ′0(0)+ δφ′1(0)+ δ2φ′2(0) δ = − 1
2

or

φ′(0) = −0.9991 (10)

which differs from the exact result (Banerjeeet al [3])

φ′(0) = −0.938 (11)

by 6.5%!
Observe that while the first-order result

φ′(0) = −0.8075+O(δ2)

is worse than the zeroth-order result

φ′(0) = −1+O(δ)

the second-order result (10) is better than the latter.
One may improve the convergence further by modifying the above procedure along the

lines of Laurenzi [4] and others.
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